# How Climate Works Module 3

# Temperature of a Planet



#### **Energy In = Energy Out**

- Let the rate of energy flow from the Sun to the Earth be called F<sub>in</sub>
- Let the rate of energy flow from the Earth to outer space be called  $F_{out}$



- Assume both Sun and Earth are blackbodies ( $\mathcal{E}$ =1), so F =  $\sigma$  T<sup>4</sup>
- F<sub>in</sub> = absorbed sunlight x daylight area
- $F_{out} = \sigma T_{earth}^4 x \text{ total area}$



#### F<sub>in</sub> = Solar brightness x (1 – albedo) x (area of Earth's shadow)

 $F_{out} = \sigma (T_{earth})^4 x$  (area of Earth's surface)



 $F_{in} = \text{Solar brightness x (1 - α) x π r<sup>2</sup>}$  $F_{out} = \sigma (T_e)^4 x 4π r^2$ 





# But the observed surface temperature is about 288 K

# **Works for Other Planets Too** $F_{in} = F_{out}$ $\frac{S(1-\alpha)}{4\sigma} = T^4$

Experiment! <u>http://tinyurl.com/planetary-balance</u>

# Greenhouse Effect

### **Dancing Molecules & Heat Rays!**

 Nearly all of the air is made of oxygen (O<sub>2</sub>) and nitrogen (N<sub>2</sub>) in which two atoms of the same element share electrons





 Infrared (heat) energy radiated up from the surface can be absorbed by these molecules, but not very well

Diatomic molecules can vibrate back and forth like balls on a spring, but the ends are identical

## **Dancing Molecules & Heat Rays!**

- Carbon dioxide (CO<sub>2</sub>) and water vapor (H<sub>2</sub>O) are different!
- They have many more ways to vibrate and rotate, so they are very good at absorbing and emitting infrared (heat) radiation



Molecules that have many ways to wiggle are called "Greenhouse" molecules

Absorption spectrum of CO<sub>2</sub> was first measured 1863



# **Bathtub Analogy**

- If faucet runs faster than drain, level rises ... and vice versa
- Drain runs faster when water is deep
- Adding CO<sub>2</sub> to air acts like a clog in the drain
- Water rises until drainage balances inflow again



Faucet ~ Sunshine Drain ~ Thermal emission Water level ~ temperature

# Greenhouse Gases

# **Energy is "Quantized"**

- When radiation interacts with atoms and molecules, only certain "jumps" in energy are possible
- Electrons orbit at specific energy levels above an atomic nucleus
- Absorption of a photon of just the right energy can make them "jump up" to the next level



 Emission of a photon occurs when an electron "falls" down to a level below

## **Molecules and Photons**



- Molecules are groups of atoms that share electrons (chemical bonds)
- Molecular transitions involve changes in vibration, rotation, bending, and stretching of chemical bonds
- Photons can interact with molecules to change states
- Transitions involve specific amounts of energy, so only certain wavelengths are active

Molecular transitions typically absorb & emit in thermal infrared

#### **Dancing Molecules and Heat Rays!**

 Nearly all of the air is made of oxygen (O<sub>2</sub>) and nitrogen (N<sub>2</sub>) in which two atoms of the same element share electrons





 Infrared (heat) energy radiated up from the surface can be absorbed by these molecules, but not very well Diatomic molecules can vibrate back and forth like balls on a spring, but the ends are identical

No electric dipole!

#### **Dancing Molecules and Heat Rays!**

- Carbon dioxide (CO<sub>2</sub>) and water vapor (H<sub>2</sub>O) are different!
- They have many more ways to vibrate and rotate, so they are very good at absorbing and emitting infrared (heat) radiation



Molecules that have many ways to wiggle are called "Greenhouse" molecules



**Figure 4-4** A comparison of the fate of infrared light in the optically thick CO<sub>2</sub> bend frequency (*left*) versus the optically thin atmospheric window (*right*).

# Optical "Thickness"

- In CO<sub>2</sub> absorption bands, atmosphere is totally opaque to IR photons
- They get absorbed and re-emitted higher up
- It's cold up there!
- Think about the Layer Model

## **View from Space**

- Hot surface emits directly to space in window region
- Cold upper layers emit to space in optically thick regions
- Total emission much less than from sfc



Wavelength( $\mu$  m)

## **Effect of Adding CO<sub>2</sub>**



Optically thick regions are as cold as they can get

•

- But the thick regions get wider with added CO<sub>2</sub>
- Rate of total emission (area under black curve) decreases less and less

# **Radiative** *Forcing* **by Increased** CO<sub>2</sub>

- An instantaneous doubling of CO2 reduces outgoing infrared by 3.7 Watts per square meter if temperature stays constant
- As temperature gradually rises, more infrared emission results
- Eventually, outgoing infrared increases to balance absorbed sunlight again, but with higher temperatures

### **Common Sense**



John Tyndall, January 1863

- Doubling CO<sub>2</sub>
   would add 4
   watts to every
   square meter of
   the surface of
   the Earth, 24/7
- Doing that would make the surface warmer
- This was known before light bulbs were invented!

## Common Myth #1

"Scientists think burning coal causes global warming because it's been getting warmer lately"



WRONG! We're sure because we know that when we add heat to things, they warm up

# Remember

- Infrared radiation can interact with shared electrons (chemical bonds) of atmospheric gas molecules
- Less than 1% of gases in air have more than 2 atoms
- CO<sub>2</sub> and H<sub>2</sub>O molecules absorb and emit many wavelengths of thermal radiation emitted by Earth
- The air is selectively transparent: visible light gets through, but infrared radiation is trapped
- Doubling CO<sub>2</sub> absorbs about 4 Watts of thermal energy per square meter of the whole Earth

Vertical Energy Exchange

# **Greenhouse Effect**

- Hot surface emits directly to space in window region
- Cold upper layers emit to space in optically thick regions



# Vertical Variations are Crucial

- The world is a big place, but the atmosphere is very thin, and most of it is close to the ground
  - About 15% of the atmosphere is below our feet
  - At the top of Long's Peak, the figure is 40%
  - You are closer to outer space than you are to Denver!
- Changes in atmospheric temperature with height are responsible for the



- Vertical mixing of the atmosphere cools the surface, and warms the upper air
- Greenhouse Effect depends on thermal radiation being emitted from the cold upper layers
- So the more vertical convective mixing we get, the less powerful added heat exchanger, capable of partially or completely the Greenhouse

# Vertical Mixing



equalizing the temperatures of the two layers.

## **Earth's Energy Balance(s)**



- Surface absorbs 51 units of sunshine, plus 96 units of thermal IR! (total = 147 units, 47% more than incoming solar!)
- Surface emits only 117 units, gives the rest back by evaporating water (23 units) and convection (7 units)

#### The Job of the Air & Sea

#### is to let the energy out!



The movement of the air (and oceans) allows energy to be transported to its "escape zones!"

Lateral Energy Exchange

### The Job of the Atmosphere

#### is to let the energy out!



The movement of the air (and oceans) allows energy to be transported to its "escape zones!"

# Energy In

Absorbed Solar Radiation



- North-south contrast
- Land-sea contrast
- Ice and snow
- Deserts vs forests

# **Energy Out**

Outgoing Longwave Radiation



Annual Mean

- Given by εσT<sup>4</sup>
   (which T?)
- Combined surface and atmosphere effects
- Decreases with latitude
- Maxima over
   subtropical highs
   (clear air neither
   absorbs or emits much)
- Minima over tropical continents (cold high clouds)
- Very strong maxima over deserts (hot surface, clear atmosphere)

## **Energy In minus Energy Out**

**Net Radiation** 



- Incoming solar minus outgoing longwave
- Must be balanced by horizontal

## **Earth's Energy Balance**

Earth's annual energy balance between solar insolation and terrestrial infrared radiation is global but not local

The global balance is maintained by transferring excess heat from the equatorial region toward the poles



# **Circulation:**

# Wind & Water

#### If the Earth didn't rotate, it would be easy for the flow of air to balance the energy

- Thermal convection leads to formation of convection cell in each hemisphere
- Energy transported from equator toward poles
- Surface wind in Colorado would always blow from the North



### Winds on the Rotating Earth



- Deep convective cells confined to tropics
- Condensation heating in rising branch of
   Hadley Cell lifts the center of mass of the atmosphere (converts latent to potential energy)
- Downhill slope toward winter pole produces jet streams in middle latitudes
- Jet is unstable to small perturbations, breaks down in waves we call winter storms

#### **Surface Winds and Pressure**



## **Ocean Currents**



Surface Energy Exchange



# **Solar Radiation**



- 30% reflected by clouds, air, dust, and surface
- 19% absorbed by the atmosphere (mostly clouds)
- 51% absorbed at the surface

# Reflection

- Albedo: the fraction of incoming radiation that gets reflected
- Surface

   albedo varies
   according to
   the material
   Spatially

| TABLE 2.3 Typical Albedo of Various Surfaces |                  |
|----------------------------------------------|------------------|
| SURFACE                                      | ALBEDO (PERCENT) |
| Fresh snow                                   | 75 to 95         |
| Clouds (thick)                               | 60 to 90         |
| Clouds (thin)                                | 30 to 50         |
| Venus                                        | 78               |
| Ice                                          | 30 to 40         |
| Sand                                         | 15 to 45         |
| Earth and atmosphere                         | 30               |
| Mars                                         | 17               |
| Grassy field                                 | 10 to 30         |
| Dry, plowed field                            | 5 to 20          |
| Water                                        | 10*              |
| Forest                                       | 3 to 10          |
| Moon                                         | 7                |
| *Daily average.                              |                  |



Conduction is by hot molecules colliding with neighbors Convection is by hot stuff moving in bulk from place to place



# Energy Balance of Earth's Surface



#### **Energy from the Surface to the Air**

#### **Rising Warm Air (H)**



#### **Evaporated Water (LE)**



- Energy absorbed at the surface warms the air
- Some of this energy is transferred in rising warm "thermals"
- But more of it is "hidden" in water vapor