How Climate Changes

How Many Degrees of Warming per Watt/m² of Heating?

MODULE 4

Climate Forcing, Feedback, & Sensitivity

How Many Degrees of Warming per Watt/m² of Heating?

Consider reading Dessler Chapter

Planetary Energy Balance

Energy In = Energy Out $S(1-\alpha)\pi R^2 = 4\pi R^2 \sigma T^4$ $T \approx -18^{\circ} C$

But the observed T_s is about 15° C

What If ... Energy Out is NOT equal to Energy In?

- Suppose the Sun suddenly gets brighter
- Eventually the Earth will warm up & emit more to re-establish equilibrium
- But for awhile \dots $E_{in} > E_{out}$

WE DEFINE "Climate Forcing" \bigcirc = $F_{in} - F_{out}$

- The rate at which energy enters the climate system minus the rate at which it's emitted equals the rate of change in stored energy in the system
- We DEFINE this rate to be the "forcing" of the climate system, before the climate can adjust by warming or cooling

Climate Forcing Example 1 Sun Esn

$$E_{in} = \frac{S_0(1-\alpha)}{4} x 1.01 = 241.8 W m^{-2}$$

 $E_{out} = \sigma T_e^{4} = 239.4 W m^{-2}$

- Suppose the Sun suddenly increased in brightness by 1%
- E_{in} would increase suddenly by 2.394 W m⁻²
- In that instant,
 T_e would not yet have changed
- So *E_{out}* would still be 239.4 W m⁻²
- Radiative Forcing (RF) = $E_{in} - E_{out}$ = 2.394 W m⁻²

$$E_{in} = \frac{S_0(1 - \alpha)}{4} = 239.4 \ Wm^{-2}$$
$$E_{out} = \sigma T_e^{4} - 1 = 238.4 \ Wm^{-2}$$

- Suppose the Earth's atmosphere suddenly became more IR opaque and absorbed 1 W m⁻² of the outgoing IR
- Incoming energy would remain unchanged
- In that instant,
 T_e would not yet have changed
- Radiative Forcing (RF) = $E_{in} - E_{out}$ = 1.0 W m⁻²

Climate Forcing Example 3

$$E_{in} = \frac{S_0(1 - 0.31)}{4} = 236.0 \ Wm^{-2}$$
$$E_{out} = \sigma T_e^{4} = 239.4 \ Wm^{-2}$$

- Suppose the Earth's albedo suddenly changed from 30% to 31%
- Absorbed energy would decrease to 236 W m⁻²
- In that instant, the outgoing energy would remain the same
- Radiative Forcing (RF) = $E_{in} - E_{out}$ = -3.4 W m⁻²

Modern Climate Forcing

Sensitivity = Response Forcing

degrees per Watt m⁻²

(absorbed minus emitted)

Response: (Change in **Temperature**)

Solve for ΔF that produces a given ΔT

Baseline Climate Sensitivity

"Let's do the math ..."

$$F = \frac{S_0(1-\alpha)}{4} = \sigma T^4$$

$$\frac{dF}{dT} = 4\sigma T^3 = 4\sigma (255K)^3 = 3.8W \, m^{-2} K^{-1}$$

$$\Delta T = \frac{1}{3.8W \, m^{-2} K^{-1}} \Delta F = \frac{0.266 \, K}{W \, m^{-2}} \Delta F$$

A 1 W m⁻² change in absorbed sunshine produces about a 0.27 °C change in Earth's temperature

"Feedback"

in colloquial English

Feedback loop as a technical concept

An input signal is modified to become stronger or weaker with each pass through the feedback loop

POSITIVE FEEDBACK

- gain > 1
- Increases signal

NEGATIVE FEEDBACK

- gain < 1
- Weakens signal

No value judgements! Positive means neither good nor bad

Feedback

Climate Feedback Processes

- Positive Feedbacks (amplify changes)
 - Water vapor
 - Ice-albedo
 - High clouds
 - Negative feedbacks (damp changes)
 - Lapse rate
 - Low clouds

Ice Albedo Feedback

- Radiative forcing melts snow and ice
- Darker surface absorbs more radiation
- Amplifies warming or cooling

Water Vapor Feedback

- Radiative forcing warms surface
- Warmer surface evaporates more water
- Warmer air can "hold more water"
- Increased water vapor (GHG) absorbs more outgoing radiation, amplifying warming

Vertical Mixing Feedback

- Greenhouse effect depends on emission to space from higher (colder) levels of the atmosphere
- If surface warming produces increased vertical mixing by convection, then more heat is mixed to higher levels
- Warm air aloft emits more radiation to space, compensating for original forcing

Cloud Feedbacks

- Additional water vapor makes more clouds
- Low clouds cool, but high clouds warm

Feedback Arithmetic

- Initial temperature change ∆T
- Strength of feedback indicated by *gain* g
- Feedback converts change to g ∆T
- Feedback converts $g \Delta T$ to $g(g \Delta T) = g^2 \Delta T$, etc

Overall effect of feedback is

 $\Delta T_f = \Delta T_i + g \Delta T_i + g^2 \Delta T_i + g^3 \Delta T_i + \dots$ $\Delta T_f = \Delta T_i \sum_{k=0}^{\infty} g^k$

Can write this more simply as

$$\Delta T_f = \frac{\Delta T_i}{(1-g)}$$

[see Dessler pp 51-55]

- Positive vs Negative Feedback
 DOES NOT mean "warming" vs "cooling"
- Positive feedback INCREASES either warming or cooling
- Negative feedback REDUCES either warming or cooling

• Gains are additive:

[see Dessler pp 51-55]

- $g_{TOTAL} = g_{albedo} + g_{vapor} + g_{cloud} + g_{mixing} + \dots$
- If $g_T > 0$, overall feedback is positive (amplifies)
- If $g_T < 0$, overall feedback is negative (damps)
- Real world g's for climate are hard to measure!

Process-Level Gains

Feedback Process	Notes	Estimated Gain
Water vapor	Strongly positive!	+0.6
Ice-Albedo	Weakly positive	+0.1
Vertical Mixing ("lapse rate")	Opposes water vapor	-0.3
Clouds (sum of low < 0 and high > 0)	Very dicey cancelation	+0.1
TOTAL	Well-Constrained	+0.6

Gains are additive: $g_{TOTAL} = g_{albedo} + g_{vapor} + g_{cloud} + g_{mixing} + \dots$

Ultimately, We're Sure

- There is positive feedback in the climate system because climate has changed A LOT over geologic time
- There is negative feedback in the climate system because climate has never "run away" to permanently freeze or evaporate the oceans

Total Climate Sensitivity & Feedback

• Without feedbacks $g_T = 0, T_{2xCO2} \sim 1.1^{\circ}C$

• With feedbacks $g_T \sim 0.6$, $T_{2xCO2} \sim 3^{\circ}C$

(our best estimate)

Estimating Total Climate Sensitivity

1. Paleoclimate analogs: how much has climate changed in the past when forcing of known strength was applied?

- Advantage: all feedbacks included
- Disadvantage: hard to quantify radiative forcing & global temperature response

2. Calculation from physical principles

including feedback processes (complex global climate models)

- Advantage: Physical insight
- Disadvantage: Models likely wrong!

Sensitivity of Past Climates

- 1. Geologic past (100's of millions of years)
- 2. Deglaciation analog (18,000 years ago to preindustrial time)
- 3. Last Millennium analog (Medieval Warm Period to Little Ice Age)
- 4. Modern Climate Record (20th Century changes)

The further back we go, the less data we have to work with. Using modern data, we have only brief transients to study.

Ice Age World

CO₂ and the Ice Ages

 Over the past 420,000 years atmospheric CO₂ has varied between 180 and 280 ppm, beating in time with the last four glacial cycles

Climate Forcing

Ice Age Climate Forcings

Source: Hansen and Sato (2011)

Climate Forcing & Response

- After last ice age, Earth received about
 6.5 Watts per square meter more radiation
- Temperatures warmed about 5 C over 10,000 years
- Huge ice sheets melted, seas rose
 hundreds of feet
- We can add 6.5 Watts / m² in this century!

Climate Sensitivity

Dozens of studies using many different methods agree that climate sensitivity is about 3 C per doubling of CO₂

Distributions and ranges for climate sensitivity from different lines of evidence. The circle indicates the most likely value. The thin colored bars indicate very likely value (more than 90% probability). The thicker colored bars indicate likely values (more than 66% probability). Dashed lines indicate no robust constraint on an upper bound. The IPCC likely range (2 to 4.5 °C) and most likely value (3 °C) are indicated by the vertical grey bar and black line, respectively (Source: Knutti & Hegerl, Nature, 2008)

Equilibrium Climate Sensitivity

- Surface warming required to reestablish thermal equilibrium at top of atmosphere
- Many lines of paleoclimate evidence and most GCMs find about 3

Transient Climate Response

- Warming takes a long time because much of the heat is absorbed by the oceans
- TCR is warming at time when CO₂ reaches 560 ppm
- Models and obs show
 TCR ~ 1 to 2.5 ° C

GHG Radiative Forcing

CHANGES IN GREENHOUSE GASES FROM ICE CORE AND MODERN DATA

Compare Ancient & Modern Forcing 6.5 W m² • End of Ice Age: Over 100 centuries (18k to 8k BP) < 1 W m² • "Little Ice Age": (Roughly 1400 to 1800) ~ 2 W m² • Since 1850: **12 W m²**

• Burn 10x FF to date:

(over 3 centuries if no policy)

Geo-Goldilocks

- Sun has brightened over geologic time now 30% brighter than for early Earth
- Greenhouse forcing has mostly fallen, with some ups and downs
- Drop in GHG forcing has largely compensated for the increase in solar forcing

