Earth System Models

Module 7
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Determlmstlc Models

F =ma
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g “cause and effect”
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Deterministic, not empirical “Genera|
“F = ma of a compressible

fluid on a rotating sphere Circulation
with radiation, MOdG'S”

thermodynamics, and

phase transitions” (GCMS)

Allow detailed prediction of e
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Climate Model Processes
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Climate Model Structure
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Climate Model Grids
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Topography at

Different Resolutions

Climate Models circa early 1990s ~ Global coupled climate
models in 2006

400 km 100 km

: Global models in 5-10 yrs
Regional models

25 km 10 km

Optinistic view on model-developenent



Climate Model “Hindcasts”

Global annual mean near surface temperature
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Warming under Cooling
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_ Predicted
Vertical
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Fig. 12.9 Contour piot of the zonally averaged change in air temperature during DJF resulting from by C l ' m ate
a CO, doubling in two models that each give a globai-average surface temperature increase of 4°C. Cool-
ing and warming greater than 4°C are shaded, {Top panel, Wetherald and Manabe (1986), reprinted with m Od e | S

permission from Kluwer Academic Publishers; bottom panel, Hansen ef al. (1984), © American Geo-
physical Union, as printed in Schlesinger and Mitchell (1987), ©@ American Geophysical Union.]
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job of predicting past climate
change
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Transient
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e Warming takes a long
time because much of
the heat is absorbed
by the oceans

| TCR is warming at

time when CO,
reaches 560 ppm

e Models and obs show
TCR~1t02.5° C



Modern Climate Forcin
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Anthropogemc Forcing

- | * | —e— AR4RF -

LN 4 | &
i Coolmg from | * | :
1oL reflective air Greenhouse -
~ t pollution is harder gases :
> - to estimate 1
= 08 Aerosols 1
S i Total ]
O - anthropogenic .
O 06 g
041 A
02 q
I coolin 1

0.0 ooling

-2 0 2 t
Effective radiative forcing (W m?)



a)

Observatlons

/_g___ -7

.) L /Precipitation

150

210

270

(cm)

Model

& & | Evaluation:

 General patterns
and magnitudes
very well simulated

 Problems with
mountain ranges
and some finer-
scale patterns

Figure 8.5. Annual mean precipitation (cm), observed (a) and simulated (), based on the multi-
modef mean. The Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and Arkin,
1997) ohservation-based climatology for 1980 to 1999 js shown, and the modef resufts are for
the same period in the 20th-century simulfations in the MMD at PCMDI. In (a), ohservations were
not avaifable for the grey regions. Results for individual modefs can be seen in Supplementary
Material, Figure S8.9.
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Climate Scenario Workflow
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 Called Representative Concentration
Pathway (“RCP”) in IPCC ARS

— Future pathway of CO, & other
greenhouse gases that derived by social
scientists from a set of self-consistent
assumptions

— Named for radiative forcing (W m-2) in
2100

— Each requires emissions to peak at
different years in the future  «pcp 4 57

e Renamed Shared Socioeconomic Pathways
(“SSP”) in IPCC ARG

— SSPs have two numbers: warming
(Celsius) and forcing (W m-2) in 2100
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* Not predictions ...
“what if”
experiments

 None are more or
less likely

e Depends on
economics and

policy (politics)
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e Emissions peak in
~ 2020 (RCP2.6)

1900 1950 2000 2050

Years

2100 — 2070 (RCP6.0)
_ 2150 (RCP8.5)



Radiative forcing (W m™)
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Global surface temperature change (° C)
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